If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+112x-784=0
a = 11; b = 112; c = -784;
Δ = b2-4ac
Δ = 1122-4·11·(-784)
Δ = 47040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{47040}=\sqrt{3136*15}=\sqrt{3136}*\sqrt{15}=56\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(112)-56\sqrt{15}}{2*11}=\frac{-112-56\sqrt{15}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(112)+56\sqrt{15}}{2*11}=\frac{-112+56\sqrt{15}}{22} $
| -8p+14=62 | | 175=a-29 | | -9(r+53)=99 | | c-21=21 | | b-38=40 | | r/5+27=22 | | √3x2-5x+7√3=0 | | 7t=t+69 | | 50x-48=302 | | 4(w+96)=56 | | 12+n=6+8 | | 11x2-26x-21=0 | | h/5+-46=-37 | | 44x+16=500 | | 152=m+84 | | x3+3x2+3x-7=0 | | 16*x=0.0625 | | d+33=76 | | -0.4=g÷3-0.9 | | -72=-8(g-82) | | 6w+2=62 | | q/9–50=56 | | 10v-24=26 | | 6=d/5-2 | | 10v-17=63 | | 2064=24(p+30) | | 8(w-88)=24 | | k/5+19=25 | | x(2x-3)=98-3x | | 1=150-50p | | x^2-x=2340 | | 4+3.7x=10.6+4.2x |